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Gyroscopic tracking systems may be designed to follow multidimensional
input signals. Thus, for example, on the basis of a three-axis gyroscope
system (1] it is possible to construct a tracking system to follow &
three-dimensional signal on three axes properly oriented in a three-
dimensional space. It is possible to follow two-dimensional input signals
with a two-axis gyroscope system.

On the basis of the theory of multidimensional random processes [2-51,
we treat below the problem of constructing an optimal gyroscopic track-
ing system for following a two-dimensional input signal in the presence
of not only noise in the input, but also disturbances caused by the
motion of the object on which the tracking system is mounted. As is
shown in the paper, these disturbances cause intercorrelation of the re-
duced input signals which determine the optimal weighting function, even
in the case when the input signals themselves are uncorrelated. The cor-
relation function of the reduced input signals is determined both by the
statistical characteristics of the disturbances and by the structure and
parameters of the transfer function matrix of the gyroscope system. Hence,
the optimal weight function of the entire tracking system as a unit, and
not only its correction circuit, depends to a large extent on the dynamic
characteristics of the gyroscope system.

1. Gyroscopic tracking system with feedback. Error in re-
producing the true input signal. A tracking system designed for
following two-dimensional input signals consists of a gyroscope with
three degrees of freedom and an input signal converter, the transfer
function of which should be chosen so that the mean square error in re-
producing the true input signal will be a minimum.

The equations of motion of a gyroscope have the following form
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Ad" 4 oo —HB = — Lys(2) +; (2)]
BR" 4 Ho' = Sly,(t) + ¥1(8)]

Here « is the angle of rotation of the external Cardan ring of the
gyroscope, B is the angle of rotation of the housing of the gyroscope, H
is the kinetic moment of the gyroscope, A is the moment of inertia of the
gyroscope together with the housing and outer gimbal about the axis of
this gibmal, B is the moment of inertia of the gyroscope together with
the housing about the axis of the housing, — ox’ is the moment of the
friction force in the bearings of the axle of the external gimbal,

- ly,(t) and Sy,(t) are disturbing moments about the axis of the outer
gimbal and the axis of the housing, respectively, which arise, for
example, as a consequence of the pitching or rolling of the ship on which
the tracking system is mounted. Further, we will assume that y, (t) and
y,(t) are stationary random processes with mathematical expectations
equal to zero.

1.0

We denote by - ly,(t) and Sy, (t) the moments about the axis of the
outer ring and the axis of the housing of the gyroscope, respectively,
which are superimposed by the correcting electromagnets. These moments
are proportional to the signals y,(t) and y,(t) which are formed in the
converter according te the following law

Y1 (t) = X1 (D) 16, (t) — a (8)] 4 X1 (D) [0 (£) — B (2)]
Y2 (8) = X1 (DY 18 (£) — & (£)] + Xoa (D) 162 () — B (2)]
where
0; (t) = my(t) + ny(t) (i=1,2) (1.3)
are the input signals into the system, m; (t) being the true signal and
n, (t) the noise. The true signal m(t) and the noise n, (t) are uncor-

related stationary random processes with mathematical expectauons equal
to zero.

We denote by X. k(D) (j, k=1, 2) elements of the transfer matrix
function
d
X (D) =] X (D) (o= (1.4)

of the converter. As was mentioned above, the function X(D) is to be de-
termined from the condition of optimal reproduction of the true input
signal by the system, in order that the angle of rotation of the external
gimbal «(t) will be as close as possible to m;(t), and the angle of rota-
tion of the housing of the gyroscope P(t) will be as close as possible
to m,(t).
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Equations (1.1) may be put in the form
s H i
'+ o’ — 2 B = —— [y () + b (1))
4an 4 4 (1.5)

B4 Ho =2 )+ $:(0)]

We introduce the matrices

Lo =lums " TP se=1581 e
c@=sis 0] vo=[Rol vo=|3E] e

Then the system (1.5) may be replaced by the matrix equation

L(D)z(t)=e(D)[y(t) + v (t)] (1.8}
From Equation (1.8) it follows that
d0=Y D)y +YD)pe) (Yo =220 (1.9)

where L*(D) is the adjoint of the matrix L(D) and A(D) is the determinant

of the matrix L(D).
In order to represent in matrix form the relations (1.2), which de-
scribe the formation of signals in the converter, we introduce the

matrices

w=138]  mo-]

6 (1) mel ro=|20] a9

my (t) n (2)

In accordance with (1.2), (1.4), (1.6) and (1.7) we obtain the follow-
(1.11)

ing relation

y@&) =X (D)[6(t) —z(®)]

Since according to (1.3) and (1.10)

0(t) =m(t) +n(t) (1.12)

where m(t) is the matrix of the true signal and n(t) the disturbance
matrix, the relation (1.11) takes the form

yO)=XD)m@)+n@®) —X D)z () (1.13)

Substituting into (1.9) the value of y(t) according to (1.13), we
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obtain the matrix differential equation describing the tracking system
together with the converter

[E4+Y (D)X(D)}z (t)=Y (D) X (D) m {)+Y (D) X (D)n(t) + Y (D)% (¢) (1.14)

Here E denotes the unit matrix. We now denote by Z(D) the inverse of
the matrix E + Y(D)X(D):

Z(D)=[E+Y (D)X (D) (1.15)

We premultiply Equatiom (1.14) by the matrix Z(D)
(1.16)
z2(t)=2(D)Y (D)X (D) m(t)+Z(D)Y (D)X (D)n(t)+Z(D)Y (D)% (t)

We denote by £(t) the error matrix in the reproduction of the true
signals m (t) and m,(t).

e(ty=m(t)—z(t) (1.17)

Since according to (1.15)

ZD)IE+YD)X(D) =E (1.18)
we have the identity

m(t) =ZD)m(t)+Z (D) Y (D) X (D)m (t) (1.19)

Substituting m(t) and z(t) from (1.19) and (1.16) into (1.17), we re-
duce the error matrix to the form

e®)=2(D)(mt)—Y (D)p () —Y (D)X (D)n (1)) (1.20)

In Expression (1.20) the matrix transfer function of the converter
X(D), which is to be determined, appears explicitly, as well as through
Z(D).

2. Introduction of disturbing forces into the input of the
converter. For solution of the problem when disturbing forces y,(t)
and y,(t) are introduced into the input of the converter, it is neces-
sary to put the tracking system described in Section 1 into correspond-
ence with another tracking system having no disturbing forces, but with
an input signal

0% (1) = M) + N (8) 2.0)

where M(t) = || M. ;(t) || is the matrix of the true signal, and N(t) =
I N; (¢) || is the *disturbance matrix, chosen so that the matrix error
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e(t) of reproduction of the signal M(t) coincides identically with the
matrix &(t) determined by the Expression (1.20).

For the system considered in this section, the Expression (1.9) de-
fining the output signal of the system must be replaced by the following
expression

@)=Y D)y*@® (2.2)
where the starred symbols refer to the new tracking system.

It follows from (1.13) and (2.1) that the output signal of the con-
verter now takes the form

y*(t)y=X(D)IM(t)+ N (t)] — X (D) z* (¢) (2.3)
From (2.2) and (2.3) it follows that
E+YD)XDNz* @)=Y DXD)MO+YD)XD)N@)  (2.4)
where, as above, E denotes the unit matrix.

Premultiplying the left- and right-hand sides of Equation (2.4) by
the matrix Z(D) defined in (1.15), we have

2*(t)=Z(D)Y (D)X (D)M (t) + Z(D)Y (D)X (D) N (¢) (2.5)
The error &*(t) in reproducing the signal M(t) is
e* (t) = M (t) — 2* () (2.6)
By analogy with (1.19)
M(t)=Z(D)M (t)+ Z(D)Y (D) X (D) M (¢) (2.7
Substituting Expressions (2.7) and (2.5) into (2.6), we obtain
e*(t)=Z(D)M (t)— Z(D)Y (D)X (D)N (t) (2.8)

From comparison of the Expressions (2.8) and (1.20) it is clear that
in order to have the identity

e*(t)=e (2) (2.9)

we must take
M@)=m(@)—Y D)y (), N@®=n(@) (2.10)

The signals obtained from (2.10) may be called the reduced input
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signals.

In accordance with (2.10) and (2.1), the matrix of the input signals
6*(t) takes the form

_[8 O] ] mO—Ya@ O =YuD) % +m
# O =[xy | = m —¥a @ —va Drwe L | G0

As is clear from (2.11), the reduced input signal matrix 6°%(t) is a
two-dimensional random process, the elements of which 8,*(t) and 6,*(t)
are correlated even in the case when

0, (t) = my (t) + ny (2), 8y () = my (t) + na (2)
are uncorrelated.

In order to treat the problem of minimizing the root-mean-square
error Ve? of reproduction, it is more convenient to proceed from the
scheme outlined in Section 2, since in this it is possible to apply
directly the method of Wiener, as will be shown below.

3. Equivalent system without feedback. We now consider a
system without feedback, i.e. a filter into the input of which is fed
the signal (2.1)

() =M@+ N()

where M(t) and N(t) are defined by Expressions (2.10). We assume that
M(t) is the true signal, which the filter must reproduce, while N(t) is
noise. The transfer function matrix of the filter is denoted by ®(D).
The output signal from the filter is the following

#** (1) = ® (D) (M (t) + N (1)] (3.1)
The error in reproducing the signal M(t) is
¥ (1) = M (t) —2** (1) 3.2)
or, in accordance with (3.1)
e** (t) = [E — ® (D)] M (t) — ® (D) N (¢) (3.3)
where as above E is the unit matrix.

Let (D) be the optimal transfer function of the filter, giving the
minimum root-mean-square error

Ve (=12
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in reproducing the signals M.(t) (j = 1, 2). The determination of the
function 0(D) will be carried out below.

According to (2.9) e(t) = ¢*(t); hence the optimal reproduction of the
true signal mj(t) (7 =1, 2) in the original problem (Section 1) will
occur when the condition

e** (1) = e* (1) (3.4)

is satisfied, where €*(t) is defined by Expression (2.8).

It is not difficult to show that condition (3.4) will be satisfied if
the matrix X(D) is chosen so that it satisfies the relation

Z(D)Y (D)X (D)= ® (D) (3.5
In fact, according to (1.18)
Z(D)=E—Z(D)Y (D)X (D) (3.6)

In accordance with (3.6) and (3.5), the expression (2.8) takes the
form

e*(t)=[E—OD)M(@Ht)—DD)N(@) (3.9
i.e. it agrees completely with the Expression (3.3) for e**(t).

The unknown matrix X(D) remains to be determined from relation (3.5).
For this we premultiply the left- and right-hand sides of relation (3.5)
by the matrix E + Y(D)X(D). Taking into account (1.18), we have

Y (D)X (D)= E+Y (D)X (D) ®(D) (3.8)

whence

Y (D) X (D) [E — ® (D)] = ® (D) (3.9

and consequently the desired transfer function matrix X(D) of the con-
verter has the form

X (D) = Y(D) ® (D) (E — ® (D)™ (3.10)

4. An alternate method of conversion. We consider the possi-
bility of using a computer in order to realize the converter with the
transfer function matrix X(D) given by the Expression (3.10). We intro-
duce the notation

r(®) =0(8) —a(®), ra(t)=04(t)—B() (4.1)

Equations (1.2), which govern the operation of the converter, are re-
duced to the form
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i) =X (D) ri(t) + X1a (D) ra (1), Y2 (t) = Xon (D) ry (&) + Xos (D) ra(2) (4.2)
Introducing the matrix
r(t)=

1 (8) |
nil (4.3)

and noting that according to (1.10) and (1.7)

rt)=0()—z(t) (4.4)
we replace Equations (1.2) with the matrix differential equation

y(&) =X (D)r () (4.5)

Substituting into (4.5) the Expression (3.10) found for X(D), we ob-
tain

y(t) =Y 1(D)® (D) [E — D (D)]*r () (4.6)

From (4.6) it follows that

Y(D)y(t)=D(D)E—@ (D) r(t) (4.7
Denoting by {(t) the function
L =E—® DN (1) (4.8)
we find that
LW —2D)E@)=r@) (4.9)

We denote by (t) the weighting function of the optimal filter, i.e.
the filter with the transfer function ®(D). As is known, these functions
are linked through the operational relation

PO (p) T (1) (4.10)

i.e. the function p ®(p) is the Carson-Heaviside transform of the
original function (t). With the help of (4.10) we may pass from (4.9)
to the integral equation

C(t)——SI‘(t—-r)g(t)dt=r(t) (4.11)

for the unknown function [(t).

We will assume that a computer for the solution of Equation (4.11) is
a part of the converter. If the solution of (4.11) is fed into the input
of the filter having the transfer function ®(D), then from the filter
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output we get the signal

EB=0D)t® (4.12)
Comparing Fxpressions (4.8), (4.12) and (4.7), we find that
Y(Dyy@)=%@) (4.13)

In the Expression (4.13) £(t) is a known function, whereas the func-
tion y(t) is to be determined. The function Y(D) is, according to (1.9),
the transfer function of the gyroscope. Denoting the weighting function
of the gyroscope by W(t), i.e. letting

PY (p)>W (1) (4.14)

we pass from relation (4.13) to the integral equation for the unknown
function y(t)

t
(we—nyma =z (4.15)

The solution of the integral equation (4.15) also represents the
signal y(t) which must come from the converter into the input of the
gyroscope.

Thus the tracking system converter, which has a transfer function X(D),
consists of a sequence of three coupled devices: a computer for solving
the integral equation (4.11), a filter with the transfer function 0(D)
into which is fed the solution of the integral equation (4.11), and a
computer for solwing the integral equation (4.15). This alternate form
of the converter has an advantage in that when the form of the input
signals 8,*(t) and 8,*(t) is changed it is necessary only to replace the
optimal filter and to modify the kernel '(t — ) in the Equation (4.11).

5. Determination of the transfer function ¢(D) of the
optimal filter. The weighting function matrix

Tiu(t) Te(t)

POt o 5.1

of the optimal filter considered in Section 3 must satisfy the integral
equation obtained by Wiener [3]

{Rm—n) T @)dn =U@) tor nn0 (5-2)

and the condition
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F@E)=0 for t<0 (5.3)

Here I'(t) is the transpose of the matrix I'(t), and R(t) and U(7) de-
note the matrices

_ ] Bu(®) Ru(v) v JUn®) Un)
R (v) = Ry (v) Ra(v) |’ v (‘t) T 1 Un(x) Un@) (54)
where R;.(1) (i, j =1, 2) are the correlation functions of the random
processes 6 .*(t) and 6,*(¢t), and U, .(v) (i, j =1, 2) are the correlation
functions of the random processes Mi(t) and ej‘(tl

We denote the spectral density matrices of R(t) and U(r) by G‘®)(a)
and G'P(a), respectively.

G® (o) = Q Re™dr, GV (a)= S Ue™dr  (5.5)

The variance of error in the reproduction of the signal M.(t) (j =
1, 2) by the optimal filter will be determined by the expression [3]

o0 o 2 2
=3 1 1 . . :
& = om S Guyuy(0)do — o S _ "21 DO ji (— i0) Oy, (i0) Giu'™ (0) do
(=12 (5.8
where
@
DOy (i0) = S T (7) e~tot dy (5.7)

and G”_”j(m) (j =1, 2) denotes the spectral density of the random pro-
cess j(tL

The matrix integral equation (5.2) and the condition (5.3) are equi-
valent to a system of scalar integral equations

2 oo
2 S Die (7)) Ry (T — 71) d7, Ui (%) =0 gor u>0  (/, p=1, 2) (5.8)
k=14
and the conditions
Fix(t) =0 gor t<0 (5.9)

In order to obtain in place of (5.8) equations valid for arbitrary
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values of 1,, both positive and negative, we introduce functions fju(Tz)
(j, w=1, 2), defined by the relations

Tin (T3) = % S Lji (v1) Rux (Te — 1) dty — Ui (T3)  for u <0 (5.10)
0
F3, (1) =0 for ©a>0

With the aid of (5.8) and (5.10) we obtain a system of integral equa-
tions, valid for arbitrary values of T,

o

1
Z K Pix (70) Rur (Ta —71) dvy — Ui (72) = [ (T2) (7, w=1,2) {531

=
o

Multiplying che left- and right-hand sides of equations (5.11} by
— T,

e

and integrating them with respect to T, between the limits ~
and @, we obtain

21 O (i) Gu'™ (@) — G (@) = Fi™ (0) Gop=12 (512
k=
where

(o]
P~y = fiu (2 emion oz (5.13)

We note that f.{v,) = 0 for 1, >0, in accordarce with (5.10); hence
the function F {w) has no poles in the upper half of the w-plane.

The system of scalar equations (5.12) may be represented in matrix
form as

@ (i0) G'® (0) — GV (@) = F™ () (5.14)

where G(R) (w) and G’ (@) are the transposes of the matrices G (o)
and G'Y(0), respectively. From (5.14) it follows that

O (io) = G (@) (G® (0)] " + F (@) IG® (o)) (5.15)

where the symbol [ ]~! denotes the inverse matrix.

We denote by Qlk the cofactor of G, k(ﬂ)(m) in the determinant of the
G'"® (v). The matrix Q =] Q. kll will have the following form

Qu Qu H= Gu® (0) —Ga® (o) |

Q=
Qn Qn — Gn(n) ((A)) Gn(R) (0))

(5.16)
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By G we denote the determinant of the matrix G'®)(a)

G = det G'® (@) (5.17)
With the help of (5.16) and (5.17) we obtain
6® (@)= 2 (5.18)

The Expression (5.15) now takes the form
@ (i0) = + 6V () + F~ (@)} @ (5.19)

The elements of the matrix ¢(iw) become

2
O (i0) = o N 6" (@) + Fi (@)% G, k=12 (5.20)

p=1

In the case where the spectral densities Gi-(R)(m) are rational func-
tions of o, the determinant G of the matrix é(n)(w) may be represented
in the form

G=G6'G" (5.21)

where G* and G are complex conjugate functions, all zeros and poles of
the function G' being situated in the upper half-plane, and all zeros and
poles of the function G in the lower half of the complex w-plane.

With the help of (5.21) we reduce Expression (5.20) to the form

2 2
G On(i0) = = DG @ + = D Fu (@0 Qs (k=12 (5.22)

p=1 p=1

Expanding the elementary fraction, we can represent the first term on
the right-hand side of (5.22) in the form

3
i -
=267 @ =Ti' @) +Tw (0 (k=12 (529
p=1
where all poles of the function T.k+(w) are located in the upper half-
plane, and those of the function "T.,7(w) are located in the lower half
of the complex w-plane. The expansion (5.23) may be carried out easily,
since the functions under consideration are completely known.

We write the second term on the right-hand side of (5.22) as follows
¢, (%)

13, . 3 -
= 0 Fau (@) Qu=3 ) —(;f—n)—, + Pix G, k=1,2) (5.24)

p=1 il=1
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where P;,~ is a function having all its poles in the lower half of the
complex w-plane, and y; are the poles of the functions Q,, and Q,,, which
are located in the upper half of the w-plane; g¢; denotes the multiplicity
of these poles. Since we know only that the functions F. ~(v) have no
poles in the upper half of the w-plane while the funct1ons themselves are
unknown, then for the time being the coefficients C;, j®) remain undeter-
mined,

Since T, k(t) =0 (j, k=1, 2) for t <0, then the functions ij(im)
have no poies in the lower half of the w-plane, and consequently the
left-hand side of (5.22) is a function having all of its poles in the
upper half of the w-plane.

Therefore the desired transfer functions 0, k(l@) (j, k=1, 2) are,
from (5.22), (5.23) and (5.24)

Uk)

Ojx (i0) = 7 [T " (@) + Z 2 ] G, k=1,2  (5.25)

The determination of the unknown coefficients Cil(Jk) is implemented
by substituting the functions ®,(iw) found above into Equation (5.12)
and finding all the poles of the functions entering in (5.12) which are
located in the upper half of the complex w-plane. Thus we arrive at re-
lations of the form

[3 0@ 6uP @] =GP @1 Gu=ty (526

k=1

where the symbol [ 1* denotes functions generated in a similar manner as
the functions T, ik *(@) in Expression (5.23).

Equating the residues at the corresponding singular points of the
functions on the left- and right-hand sides of (5.26), we obtain a system
of linear algebraic equations for the coefficients C J®)  which then
are found in the usual way.

6. Example. As an example we consider the case where the spectral
density of the incoming signal has the form

2% .
Cmemy= G+ Omm =K (=12 (6.1)

The random processes m. (1) and n:(t) (i =1, 2) are uncorrelated.

We assume that the disturbing moment about the axis of the inner
gimbal of the gyroscope is equal to zero
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w(t)=0 (6.2)

In order to determine the disturbing moment about the axis of the
outer gimbal of the gyroscope we note that the first of Equations (1.1),
including the frictiomal forces in the bearings of the outer gimbal,
takes the form

Aa* — HB' = — lys (t) — 6 (o' — §) (6.3)

where ©’ is the angular velocity of vibration of the object (pitch or
roll of the vessel) on which the tracking system is mounted. Comparing
Equation (6.3) with the first of Equations (1.1) we see that

wy=—70¢ (D= (8.4)

where & is the angle of roll of the object, which we assume to be a sta-
tionary random process with spectral density

According to (2.10), (2.11) and (6.2) the input signal Mi(t) (i=1,2)
becomes

M () =m, () +m* (1) (i=1, 2) (6.6)

where
my* (8) = — Y (D) ¥ (2), me* (1) = — Y (D) s () 6.1

Here Y-k(D} are the elements of the gyroscope transfer function matrix
Y(D), which is defined by the Expression (1.9). In accordance with (6.7)
and (1.9)

-—61D
m*(t) = oD ¢ 8@

o H/B
m* () = D5 O

B3

)
Gy == "Z’ » q’:-- (68)

In order to obtain the matrix of the spectral densities of the random
processes ’i'(*) and -2‘(t) we note that since according to (6.8)

my® () = — (B | H) Dmq® (1) (6.9)
then the mutual spectral demsities become
Gm.‘m‘ = - Gm‘,m.. = —i (B} H) Gm‘m.' (6.10y

Thus the matrix of the spectral densities of the random processes
x,*(t) and =yt (t) will have the form
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61%0%Q inc*QH | B ‘
. @ — P foie? (07— ¢P 0w’ ,
¢"™) (@) =| " 100 QH | B o QH? | B ‘ .11
{07 = ¢%3 + oi0? (@ = ¢*) + ai’0?

The spectral densities of the random processes Ml(t) and Mb(t) in
(5.6) become

GM:”! = Gmxm. + Gm.‘m." GM.M- = Gm:vm + Gm«'m.‘ (6.12)

The matrices of the spectral densities G‘R)(w) and G(U)(m), which are
defined by Expressions (5.5), become, according to (2.10) and (6.6)

cR (©) H Gm.m. + Gm;‘mlt -+ Gm'nl Gm.tmp u (6.13;
= -Loy
Gm,‘m.‘ Gm,m, + Gm:'mz‘ + G"‘zﬂ:
G(U) (0)) = u Gmxml + G"‘x‘mx' Gmi'm't‘ l (61/1)
Gmt'mn. szmz + sz"mt‘

We take the following values for the parameters of the spectral
densities given in Expressions (6.1) and (6.2)

1 1

X, = 0.01, k; =0.5sec ", ¥, =0.02, K, = 0.3 sec”

=16.107%, K, =9.10"% ¢ =108

K 2

1
For the parameters of the gyroscope we take

1 1

H/A = 2.5 sec_ ", H/B = 1000 sec”, l/A=2,5 sec™?

S/B = 100 sec™?, o, =0/A = 10 sec”}

For these values the frequency of nutational oscillations of the gyro-
scope is g = 50 sec™ !,

For Q = 0, by (5.25) the optimal transfer function ®(D) becomes

24.5(D +25) 0

0 36 (D -+ 36.6)~1 (6.15)

© (D) =

For the matrix ®(D) given here we can find with the help of (3.10)
the transfer function matrix X(D) of the converter. Denoting
ED)=0 D) [E—® D)) (6.16)
we have
l 24.5(D -+ 0,5)! 0 |

ED) =1
| 0 36 (D + 0.6)-1 |

(6.17)
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The matrix X(D) by virtue of (3.10) becomes

En(H/S)D 8w (B /S) Dt

X (D) =
D) "—Eu(«‘l/l)(D—l—GlA)D Saa (H /1) D

| (6.18)

where Z,, and 322 are the clements of the matrix (6.17).

For the gyroscope parameters quoted above the matrix X(D) takes the
form

—_ l 245D (D + 0.5)_1 0'36D2 (D + 0-6)_1 E
X (D)= | —9.8D (D + 10) (D + 0.5)- 36D (D +0.6)1 | (6.19)

From (5.6) the variance of the error in reproducing the true signal is
1% == 4-10"¢, g2 = 4.9.10~¢

The root-mean-square value of the error of reproduction is
Ver=2.102  Vez=221.10=

The author is grateful to A.Iu. Ishlinskii for his helpful advice
while this work was in progress.
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