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Gyroscopic tracking systems may be designed to follow multidimensional 
input signals. Thus, for ekample. on the basis of a three-axis gyroscope 
system [ll it is possible to construct a tracking system to follow a 
three-dimensional signal on three axes properly oriented in a three- 
dimensional space. It is possible to follow two-dimensional input signals 
with a two-axis gyroscope system. 

On the basis of the theory of multidimensional random processes [2-S], 
we treat below the problem of constructing an optimal gyroscopic track- 
ing system for following a two-dimensional input signal in the presence 
of not only noise in the input, but also disturbances caused by the 
motion of the object on which the tracking system is mounted. As is 
shown in the paper, these disturbances oause intercorrelation of the re- 
duced input signals which determine the optimal weighting function, even 
in the case when the input signals themselves are uncorrelated. The cor- 
relation function of the reduced input signals is determined both by the 
statistical characteristics of the disturbances and by the structure and 
parameters of the transfer function matrix of the gyroscope system. hence, 
the optimal weight function of the entire tracking system as a unit, and 
not only its correction circuit, depends to a large extent on the dynamic 
characteristics of the gyroscope system. 

1. Gyroscopic tracking system with feedback. Error in re- 
producing the true input signal. A tracking system designed for 
following two-dimensioual input signals consists of a gyroscope with 
three degrees of freedom and au input signal converter, the transfer 
function of which should be chosen so that the mean square error in re- 
producing the true input signal will be a minimum. 

‘Ihe equations of motion of a gyroscope have the following form 

356 
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Ad + ad -HP’ = - ZIy,(t) +q* (01 

BP" f Ha’ = S&(t) + $1(t)] 
(1.1) 

Here a is the angle of rotation of the external Cardan ring of the 
gyroscope, i3 is the angle of rotation of the housing of the gyroscope, H 
is the kinetic moment of the gyroscope, A is the moment of inertia of the 
gyroscope together with the housing and outer gimbal about the axis of 
this gibmal, B is the moment of inertia of the gyroscope together with 
the housing about the axis of the housing, - oa’ is the moment of the 
friction force in the bearings of the axle of the external gimbal, 
- Zq+(t) and Syrl(t) are disturbing moments about the axis of the outer 
gimbal and the axis of the housing, respectively, which arise, for 
example, as a consequence of the pitching or rolling of the ship on which 
the tracking system is mounted. Further, we will assume that y,(t) and 

ul#) are stationary random processes with mathematical expectations 

equal to zero. 

we denote by - Zy2( t 1 and Syl( t ) the moments about the axis of the 
outer ring and the axis of the housing of the gyroscope, respectively, 
which are superimposed by the correcting electromagnets. lhese moments 
are proportional to the signals y,(t) and yl(t) which are formed in the 
converter according to the following law 

?/r(t) = x11 (4 I4 PI - a. (ql + XI, m v-b (4 - P @)I 

Y, w = x*1 (a vb (0 --&(t)l+x*,(~)[~*(t)--p(t)l 
(1.2) 

where 

et(t) = mr (t) + nr 0) (i = 1, 2) (1.3) 

are the input signals into the system, mitt) being the true signal and 
ni( t ) the noise. The true signal mi( t) and the noise ni( t) are uncor- 
related stationary random processes with mathematical expectations equal 

to zero. 

We denote by xjk(b) (j, k 
= 1, 2) elements of the transfer matrix 

function 

x tD) = 11 xjk (D) 1 (LL$) (1.4) 

of the converter. As was mentioned above, the function ND) is to be de- 
termined from the condition of optimal reproduction of the true input 
signal by the system, in order that the angle of rotation of the external 
gimbal a(t) will be as close as possible to nl(t 1, and the angle of rota- 
tion of the housing of the gyroscope p(t) will be as close as possible 

to a,(t). 
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Equations (1.1) may be put in the form 

u” + + a’ - # P’ = - $- [yz (t) + 92 @)I 

p” + g a’ = $ [!/l(t) + 91 @)I 
(1.5) 

We introduce the matrices 

Da+@/4 D -W/A) D) 
L(D) =II (H,B)D II , z W = 11 ; I:; (1 (1.6) 

WI ==I~& -:‘A /I1 Yl w /I 
Ya w ’ (1.7) 

Then the system (1.5) may be replaced by the matrix equation 

L (4 2 (0 = e U4 Iy W + * (01 
From Equation (1.8) it follows that 

(1.8) 

( 
Y (D) = L* P) e (D) 

A (D) 1 (1.9) 

where L+(D) is the adjoint of the matrix L(D) and A(D) is the determinant 

of the matrix L(D). 

In order to represent in matrix form the relations (1.2), which de- 

scribe the formation of signals in the converter, we introduce the 

matrices 

(1.10) 

In accordance with (1.2), (1.4), (1.6) and (1.7) we obtain the follow- 

ing relation 

Y (0 = x (D) 10 (0 - 2 WI (1.11) 

Since according to (1.3) and (1.10) 

W)=m(t)+W (1.12) 

where r(t) is the matrix of the true signal and n(t) the disturbance 

matrix, the relation (1.11) takes the form 

Y (0 = x (4 [m w + n @)I - x (Q 2 V) (1.13) 

Substituting into (1.9) the value of y(t) according to (1.13), we 
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obtain the matrix differential equation describing the tracking system 
together with the converter 

1EfY(~)X(D)la(t)=Y(~)X(~)m~~t)+Y (QX(D)n(t) + y (D)*(t) (1.14) 

Here E denotes the unit matrix. We now denote by Z(D) the inverse of 
the matrix E + E(D)X(D): 

Z(D) = [E+ Y (D)X (D)]-l (.1.15) 

We premultiply Equation (1.14) by the matrix Z(D) 

(1.16) 

=(t)=V) YP)X(Q m(j))-+Z(D).Y(D)X(D)n(t)+Z(D)Y(D)g(t) 

We denote by I the error matrix in the reproduction of the true 
signals m,(t) and m,(t). 

a(0 = m(t) - r (t) (1.17) 

Since according to (1.15) 

z(~)[~+y(ww)l = E (1.18) 

we have the identity 

m(t)=Z(D)m(t)+Z(D)Y(D)X(D)m(t) (1.19) 

Substituting m(t) and z(t) from (1.19) and (1.16) into (1.17), we re- 
duce the error matrix to the form 

8 (t) = 2 (D) [m (t) - Y(D)~((t)--((D)X(D)n(t)l (1.20) 

In Expression (1.20) the matrix transfer function of the converter 
X(D), which is to be determined, appears explicitly, as well as through 

Z(D). 

2. Introduction of disturbing forces into the input of the 
converter. For solution of the problem when disturbing forces yll(t) 
and y2(t) are introduced into the input of the converter, it is neces- 
sary to put the tracking system described in Section 1 into correspond- 
ence with another tracking system having no disturbing forces, but with 
an input signal 

e* (t) = M(L) + N(t) (2.1) 

where M(t) = jiMi II is the matrix of the true signal, and N(t) = 

II Ni(t) II is the disturbance matrix, chosen so that the matrix error 



360 L. IO. Roitenbcrg 

s(t) of reproduction of the signal M(t) coincides identically with the 

matrix I determined by the Expression (1.20). 

For the system considered in this section, the Expression (1.9) de- 

fining the output signal of the system must be replaced by the following 

expression 

I* (t) = Y (D) y” (q (2.2) 

where the starred symbols refer to the new tracking system. 

It follows from (1.13) and (2.1) that the output signal of the con- 

verter now takes the form 

!/* (t) = x (0 W (0 + N @)I - x (D) e* @) 

From (2.2) and (2.3) it follows that 

(2.3) 

[E + Y (0) X (D)] z* (t) = Y (D) X (D) M (t) ;1- Y (D) X (D) N (t) (2.4) 

where, as above, E denotes’the unit matrix. 

F’remultiplying the left- and right-hand sides of EQuation (2.4) by 

the matrix Z(D) defined in (l.lS), we have 

2*(5)=Z(D)Y(D)X(D)M(t)+Z(D)Y(D)X(D)N(t) (2.5) 

‘lhe error I* in reproducing the signal M(t) is 

e* (t) = M (t) - z* (t) (2.6) 

By analogy with (1.19) 

M(t)=Z(D)M(t)+Z(D)Y(D)X(D)1M(d) (2.7) 

Substituting Expressions (2.7) and (2.5) into (2.6), we obtain 

e* (t) = 2 (D) M (t) -qwvGwwW (2.8) 

From caaparison of the Expressions (2.8) and (1.20) it is clear that 

in order to have the identity 

we must take 

e* (0 s e (t) (2..9) 

M 0) = m (4 - Y (9 9 (0, N(t) = n (t) wa 
‘lhe signals obtained from (2.10) may be called the reduced input 



signals. 

In accordance 
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with (2.10) and (2. l), the matrix of the input signals 
e’(t) takes the form 

e*(r) = 1 ;;:;;; 1 = 1 ml (t) - Yn (D) sl(t) - YM CD) 4h (0 + nl(t) 
h (t) - Yu (D) cp1 (t) - y11 PI 4h (4 + nq W II (2.11) 

As is clear from (2.111, the reduced input signal matrix V(t) is a 
two-dimensional random process, the elements of which 0,*(t) and O,*(t) 
are correlated even in the case when 

W) = ml(t) + n1(% 

are uncorrelated. 

e,(t) = ml(t) + %I (Q 

In order to treat the problem of minimizing the root-mean-square 
error J f2 of reproduction, it is more convenient to proceed from the 
scheme outlined in Section 2, since in this it is possible to apply 
directly the method of Wiener, as will be shown below. 

3. Equivalent system without feedback. We now consider a 
system without feedback, i.e. a filter into the input of which is fed 
the signal (2.1) 

B* <t) = M (t) + N (t) 

where M(t) and N(t) are defined by Expressions (2.10). We assume that 
M(t) is the true signal, which the filter must reproduce, while N(t) is 
noise. ‘Ihe transfer function matrix of the filter is denoted by MD). 
‘Ihe output signal from the filter is the following 

s** (Q = 0 (D) [M @) + N WI (34 

'Ihe error in reproducing the signal M(t) is 

s** (t) = M(t) -z** (t) (3.2) 

or, in accordance with (3.1) 

IX** (t) = [E - 0 (D)] M(t) - 0 (D) N (t) (3,.3) 

where as above E is the unit matrix. 

Let $(D) be the optimal transfer function of the filter, giving the 
minimum root-mean-square error 
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in reproducing the signals M.(t) (j = 1, 2). lhe determination of the 

function Q(D) will be carrie A out below. 

According to (2.9) I E I*; hence the optimal reproduction of the 

true signal mi(t) (j = 1, 2) in the original problem (Section 1) will 
occur when the condition 

s** (t) C s* (t) (3.4) 

is satisfied, where s*(t) is defined by Expression (2.8). 

It is not difficult to show that condition (3.4) will be satisfied if 
the matrix X(D) is chosen so that it satisfies the relation 

Z(D)Y(D)X(D)= 0(D) (3.5) 

In fact, according to (1.18) 

Z(D)=&--Z(D)Y(D)X(D) (3.6) 

In accordance with (3.6) and (3.5), the expression (2.8) takes the 

form 

e* (t) = 1E - 0 (D)] M(t) - 0 (D) N,(t) (3.7) 

i.e. it agrees completely with the Expression (3.3) for I**. 

‘lhe unknown matrix X(D) remains to be determined from relation (3.5). 

For this we premultiply the left- and right-hand sides of relation (3.5) 
by the matrix E + Y(D)X(D). Taking into account (1.18), we have 

Y @)X(D) = lE$ Y(~)X(Q10P~ (3.8) 

whence 

Y (D)X(D)[E--0((D)] =,0((D) (3.9) 

and consequently the desired transfer function matrix X(D) of the con- 
verter has the form 

X(D) = Y_‘(D)a,(D) [E-0a,(q1-1 (3.10) 

4. ~ alternate method of conversion. We consider the possi- 

bility of using a computer in order to realize the converter with the 
transfer function matrix X(D) given by the Expression (3.10). We intro- 
duce the notation 

fl (l) = 81 (q - a (t), rz (t) = 8, (t) - P (t) 
(4.4) 

Equations (1.2), which govern the operation of the converter, are re- 
duced to the form 
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yt (t) = x11 (D) r1 (t) + x1* (D) ra (4, Ya w = L m PI (4 + X2% PI ra (4 (4.2) 

Introducing the matrix 

(4.3) 

and noting that according to (1.10) and (1.7) 

r(t)d(t)-.2(t) (4.4) 

we replace Equations (1.2) with the matrix differential equation 

Y (Q = x P) r (t) (4.5) 

Substituting into (4.5) the Exp ression (3.10) found for X(D), we ob- 

tain 

y (t) = P-1 (D) 0 (B) [E - 0 (D)]% (t) (4.6) 

From (4.6) it follows that 

Y (D) y(t) = 0 (D) {E - 0 (D)]--’ r (t) 

Denoting by c(t) the function 

f (t) = [E - 0 (D)l% (t) 

(4.7) 

(4.8) 
we find that 

C (t) - 0 (D) 5 (t) = r (t) (4.9) 

We denote by r(t) the weighting function of the optimal filter, i.e. 

the filter with the transfer function Q(D). As is known, these functions 

are linked through the operational relation 

fl(P)+IV) (4.10) 

i. e. the function p o(p) is the Carson-Heaviside transform of the 

original function r(t). With the help of (4.10) we may pass from (4.9) 

to the integral equation 

5 (t) -_Sr(t--r)b(%)df = r(t) (4.11) 

for the unknown function 5(t). 

We will assume that a computer for the solution of Equation (4.11) is 

a part of the coiiverter. If the solution of (4.11) is fed into the input 

of the filter having the transfer function a(D), then from the filter 

0 
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output we get the signal 

E (t) = 0 (0) 6 (0 (4.12) 

Comparing Expressions (4.81, (4.12) and (4.71, we find that 

y P) Y 0) = E (t) (4.13) 

In the Expression (4.13) c(t) is a known function, whereas the func- 
tion y(t) is to be determined. l’he function Y(D) is, according to (1.91, 
the transfer function of the gyroscope. Denoting the weighting function 
of the gyroscope by N’(t), i.e. letting 

1PY (PI + J,v (4 (4.14) 

we pass from relation (4.13) to the integral equation for the unknown 
function y(t) 

t 

s ‘w(t - ~1 Y (~1 dt = E 0) 
0 

(4.15) 

Ihe solution of the integral equation (4.15) also represents the 
signal y(t) which must come from the converter into the input of the 
gyroscope. 

Thus the tracking system converter, which has a transfer function X(D), 
consists of a sequence of three coupled devices: a computer for solving 
the integral equation (4.111, a filter with the transfer function U)(D) 
into which is fed the solution of the integral equation (4.111, and a 
computer for solwing the integral equation (4.15). This alternate form 
of the converter has an advantage in that when the form of the input 
signals g,‘(t) and 8, ‘(t) is changed it is necessary only to replace the 
optimal filter and to modify the kernel r(t - T) in the Equation (4.11). 

5. Determination of the transfer function e(D) of the 
optimal filter. 'Ihe weighting function matrix 

r (9 = I/ r11 (q rla (t) 
r!d1w raa w II (5.1) 

of the optimal filter considered in Section 3 must satisfy the integral 
equation obtained by Wiener [31 

(5.2) 

and the condition 
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r (t) = 0 for t<o (5.3) 

Here r’(t) is the transpose of the matrix r(t), and R(T) and U(T) de- 

note the matrices 

&l W) Rlrc (%I 
R 6) = 0 R*1 (7) Rn (T) I Ull(7) ula 6) 

’ u (-4 = 1 uu (T) Ua (T) II (5.4) 

where Rij(~) (i, j = 1, 2) are the correlation functions of the random 
processes 0,*(t) and ej*(t), and Ui.(-r) (i, j = 1, 2) are the correlation 
functions of the random processes M]i(t) and Oj’(t). 

We denote the spectral density matrices of R(T) and U(t) by C’R’(o) 
and C”‘(o), respectively. 

GtR’ (co) = 1 R (z) e-iofdz, G”’ (co) = f U (T) e’-““dr (5.5) 

‘Ihe variance of error in the reproduction of the signal Mitt) (j = 
1, 2) by the optimal filter will be determined by the expression [31 

1 O3 ,g = _ 
3 2n s 

GMjMf (a).‘~ - a)jk (- i~) Q)jp (in) GbfR' (0) do 
-CO 

where 

(j-&2) 

CO 

Q)jk (io) = 
s 

I+ j& (T) e-ior dt 

(5.6) 

(5.7) 

and Cmr.# .(o) (j = 1, 2) denotes the spectral density of the random pro- 

cess.<(‘t,. 

‘Ihe matrix integral equation (5.2) and the condition (5.3) are equi- 
valent to a system of scalar integral equations 

and the conditions 

rjk(t)“O for t<O (5.9) 

In order to obtain in place of (5.8) equations valid for arbitrary 
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values of -r2, both positive and negative, 
(j, u = 1, 2), defined by the relations 

we introduce functions f jCt(~2 ) 

With the aid of (5.8) and (5.10) we obtain a system of integral eyua- 

tions, valid for arbitrary values of T* 

where 

i& note that f .[a,) = 0 for T* >O, in accordacce with (5.10); hence 
the function F. ,;fJ has no poles in the upper half of the o-plane. 

‘Ihe system of scalar equations (5.12) may be represented in matrix 

form as 

CD (io) G'R"(~o) - G'U"(o) = F-(o) (5.14) 

where GCR’ ‘(o) and G( ‘)’ (0) are the transposes of the matrices GCR’(o) 
and G’U’(o), respectively. From (5.14) it follows that 

CD (io) = G’U”‘(~) [G@” (a~)]-~ + F-(o) [GcR)' (oJ)]-~ (5.15) 

where the symbol [ I-’ denotes the inverse matrix. 

We denote by Rik the cofactor of Gik (R)(~) in the determinant of the 
G’R’(o). ‘Ihe matrix R =I] Rik 11 will have the following form 

(5.16) 
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By G we denote the determinant of the matrix G (g)(U) 

G = det G@’ (0) 

With the help of (5.16) and (5.17) we obtain 

[GtRy @,)I-‘= $ 

Ihe Expression (5.15) now takes the form 

CD (io) = + [dU (0) + 

The elements of the matrix @(io) become 

F- (41 Q 

(5.17) 

(5.18) 

(5.19) 

@jk (i0) = $- 5 [Gp/” (0) + Fjp- (0)16&k 
p=1 

o’, k=l, 2) (5.20) 

In the case where the spectral densities Gi.(R)(~) are rational func- 
tions of o, the determinant G of the matrix &R’(o) may be represented 

in the form 

G = G+G- (5.21) 

where 6’ and (r are complex conjugate functions, all zeros and poles of 
the function G’ being situated in the upper half-plane, and all zeros and 
poles of the function CT in the lower half of the complex u-plane. 

With the help of (5.21) we reduce Expression (5.20) to the form 

Expanding the elementary fraction, we can represent the first term on 
the right-hand side of (5.22) in the form 

& i Gpj@’ (a) qk = Tjk+ (0) + Tjk- (0) (I’. k = 1, 2) (5.23) 
&i=l 

where all poles of the function Tj, ‘(a) are located in the upper half- 
plane, and those of the function Tj k-(o) are located in the lower half 

of the complex o-plane. l’he expansion (5.23) may be carried out easily, 
since the functions under consideration are completely known. 

We write the second term on the right-hand side of (5.22) as follows 

(I’, k = I, 2) (5.24) 
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where P ik- is a function having all its poles in the lower half of the 

complex o-plane, and yi are the poles of the functions Rlk and RZk, which 
are located in the upper half of the o-plane; q; denotes the multiplicity 

of these 
poles in 

poles. Since we know only that the functions Fi;(o) have no 
the upper half of the o-plane while the functions themselves are 

UdUlOWll, then for the time being the coefficients Cil(jk) remain undeter- 
mined. 

Since rik(t) = 0 (j, k = 1, 2) for t < 0, then the functions @jk(k) 
have no poles in the lower half of the o-plane, and consequently the 
left-hand side of (5.22) is a function having all of its poles in the 
upper half of the o-plane. 

‘l’herefore the desired transfer functions @jk(i”) (j, k = 1, 2) are, 
from (5.22), (5.23) and (5.24) 

‘lhe determination of the unknown coefficients Cil(jk’ is implemented 

by substituting the functions Qjk (io> found above into Equation (5.12) 
and finding all the poles of the functions entering in (5.12) which are 
located in the upper half of the complex o-plane. Thus we arrive at re- 
lations of the form 

[ i Q)jk (it01 GpJR) (a)]+ = [GpiU) (o)I+ 
k=l 

(iv p==i, 2) (5.26) 

where the symbol [ I+ denotes functions generated in a 
the functions Tjk+(o) in Expression (5.23). 

Equating the residues at the corresponding singular 
functions on the left- and right-hand sides of (5.26), , 

similar manner as 

points of the 
we obtain a system 

of linear algebraic equations for the coefficients Cij’jk), which then 
are found in the usual way. 

6. ExaWle. As an erazple ze consider the case where the spectral 
density of the incoming signal has the form 

The random processes mi( t) and ni( t) (i = 1, 2) are uncorrelated. 

We assume that the disturbing moment about the axis of the inner 
gimbal of the gyroscope Is equal to zero 



Gyroscopic tracking rystcro 369 

$x 0) = 0 (6.2) 

In order to determine the disturbing moment about the sxis of the 
outer gimbal of the gyroscope we note that the first of Equations (l.l’), 
including the frictional forces in the bearings of the outer gimbal. 
takes the form 

Aa’ - HP = - zyr (t) -a (u’ - 6’) (6.3) 

where 8’ is the angular velocity of vibration of the object (pitch or 
roll of the vessel) on which the tracking system is mounted. Comparing 
Equation (6.3) with the first of Equations (1.1) we see that 

4r 0) = - -f-D+) (De-$) (6.4) 

where 6 is the angle of roll of the object, which we 8ssume to be a sts- 

tionary random process with apectrsl density 

G#Ji&==(J (6.3) 

According to (2.10). (2.11) 8nd (6.2) the input signal nri(t) (i=1,2) 
becomes 

M, (0 = mi 0) + mt* 0) (iri, 2) (6.6) 

where 

mp (t) = - Yu m 9x VI s mr* 0) --Yn(Q$l(~) (6.7) 

Here Yjk(I)) are the elements of the gyroscoue trsnsfer fWlOti0n m8triX 

Y(D), which is defined by the Expression (1.9). In accordance with (6.7) 

and (1.9) 

In order to obtain the matrix of the spectral densities of the random 

processes ml* f t) and 82 *(t) we note that since according to (6.8) 

ml* W =-(BIH)Dm*O) (6-Q) 

then the mutual spectral densities become 

G m,bnrc*=- nrr** G TP-io (BIH)GmN. (&iO) 

Thus the matrix of the spectral densities of the random processes 
rl*(t) 8nd 83*(t) will have the form 
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C@‘) (0) = 

6&V ioalZQH / B 
(02 - qy* + a&P (69 - 4’)s + csl%P 

- ioal$QH / B crlaQUa / Ba 
(01 - 48)’ + d&P (6P - qa)l + a&P 

(fi.ll! 

The spectral densities of the random processes M, ( t) and hlz( t) in 
(5.6) become 

The matrices of the spectral densities C (R)(a) and G(“)(U), which are 
defined by Expressions (5.5), become, according to (2.10) and (6.6) 

G@)(o) = 1 
G m,m, + Gm,%lp + Gn,n, G m,*m,* 

G G m*m* + Gm**m** + G,, I 
(6.13) 

tnt*clll* 

We take the following values for the parameters of the spectral 
densities given in Expressions (6.1) and (6.2) 

Xl 
= 0.01, K1 = 0.5 set-I, x1 = 0.02. K2 = 0.3 set-l 

K, = 16.19-6, Kg = 9.10-6, Q = 1O-8 

For the parameters of the gyroscope we take 

H/A = 2.5 set-‘, H/B = 1000 set-l, l/A = 2.5 set-’ 

S/B = 100 set-*, c1 =o/A = 10 set-’ 

For these values the frequency of nutational oscillations of the gyro- 
-1 scope is q = 50 set . 

For Q = 0, by (5.25) the optimal transfer function Q(D) becomes 

H 24.5 (D + 25)-l 0 
a~ (D) = 

0 36 (D + 36.6)-l II 
(6.15) 

For the matrix o,(D) given here we can find with the help of (3.10) 
the transfer function matrix X(D) of the converter. Denoting 

8 (D) = @ (D) [S - @ (D)j-l (6.16) 

we have 

E (D) = I I 24.5 (D + 0,5)-l 0 
i 

0 36 (D + 0.6)-r / (6.17) 
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The matrix X(D) by virtue of (3.10) becomes 

X (D) = I/ 8llWlS)D 822(BIS)D2 
-8ll(A/Q(D+5/A)D 8ar(H/OD 

(6.18) 

where t,, and Zz2 are the elements of the matrix (6.17). 

For the gyroscope parameters quoted above the matrix X(D) takes the 
form 

2450 (D + 0.5)-l 

x lD) = / - 9.80 (D + 10) (D + 0.5))’ 

0.36D2 (D + 0.6)-i & 

360 (D + 0.6)-l 1 
(6.19) 

From (5.6) the variance of the error in reproducing the true signal is 

G= 4.19-4, Q-= 4.9.10-4 

The root-mean-square value of the error of reproduction is 

The author is grateful to A.1.u. Ishliuskii for his helpful cf’ificcz 

while this work was in progress. 
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